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Abstract
This paper describes theoretical developments leading to measure theory and the back-
ground for the ergodic operator-theoretic approach to linear and nonlinear dynamical sys-
tems. The final section of the paper describes current developments on applying the methods
to control problems.

Introduction

The Problem

In the 20th century, Ulam, Von Neumann, and many other mathematicians studied this
simple systems capable of generating a density of states that has the following quadratic
map:

𝑆(𝑥) = 𝛼𝑥(1 − 𝑥), for 0 ≤ 𝑥 ≤ 1 (1)

When 𝛼 = 4, then 𝑆 maps onto itself 𝑆 ∶ [0, 1] → [0, 1]. The state space of the system
is defined to be [0, 1] for this case. We can define the trajectory, given an initial point
𝑥0 ∈ [0, 1] and its successive states to be

𝑥0, 𝑆(𝑥0), 𝑆(𝑆(𝑥0)), … (2)

The trajectories of this system was found to be erratic and chaotic for almost all 𝑥0 [1].
The trajectories are also highly sensitive to initial conditions. It was also found that for
certain select intial conditions, there exist a point 𝑥∗ that satisfies

𝑥∗ = 𝑆(𝑥∗) (3)
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When this phenomena happens, the trajectory will have the constant value 𝑥∗ forever.
There are also other special phenomena that could happen i.e. trajectory becoming periodic
for special initial states. The problem is there is no prior way of predicting which initial
states will lead to these special phenomenas.

Instead of studying point-wise trajectories that gave us inconclusive results, we can in-
stead study the flow of densities (measures).

Suppose we pick a large number 𝑁 of intial states and apply the map 𝑆.

x0 = 𝑥0
1, 𝑥0

2, … , 𝑥0
𝑁 (4)

x1 = 𝑆(x0) (5)

Then following holds (measure preserving) for density function 𝑓𝑖 and 𝐴 ⊂ [0, 1], where
𝐴 ∈ 𝒜 in measure space (𝑋, 𝒜, 𝜇).

∫
𝐴

𝑓1(𝑢)𝑑𝑢 = ∫
𝑆−1(𝐴)

𝑓0(𝑢)𝑑𝑢 (6)

If 𝐴 is an interval 𝐴 = [𝑎, 𝑥], then we can obtain an explicit representation for 𝑓1.

𝑓1(𝑥) = 𝑑
𝑑𝑥

∫
𝑆−1([𝑎,𝑥])

𝑓0(𝑢)𝑑𝑢 = 𝑃𝑓0(𝑢) (7)

Where 𝑃 is defined as the Frobenius-Perron operator and 𝑓0 is an arbitrary function.
We can apply this theory to our problem where 𝐴 = [0, 𝑥].

𝑆−1 ([0, 𝑥]) = [0, 1
2

− 1
2

√
1 − 𝑥] ∪ [1

2
+ 1

2
√

1 − 𝑥, 1] (8)

𝑃𝑓(𝑥) = 1
4
√

1 − 𝑥
[𝑓 (1

2
− 1

2
√

1 − 𝑥) + 𝑓 (1
2

+ 1
2

√
1 − 𝑥)] (9)

It can be found that as 𝑛 → ∞ the equation 𝑃 𝑛𝑓 approaches a unique limiting density
𝑓∗ such that 𝑃𝑓∗ ≡ 𝑓∗. In this problem, 𝑓∗ is given by

𝑓∗(𝑥) = 1
𝜋√𝑥(1 − 𝑥)

(10)

The limiting density is found to describe the frequency of with which states along a
trajectory fall into given regions of the state space. This therefore solves our previous
problems.
This problem is in a large part taken from [1] and many details are omitted for conciseness.
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The Frobenius-Perron Operator

Let us state a few definitions before defining the Frobenius-Perron Operator.
Let (𝑋, 𝒜, 𝜇) be a measure space and 𝑆 ∶ 𝑋 → 𝑋 be a transformation. If 𝑆−1(𝐴) ∈ 𝒜 for
every interval 𝐴 ⊂ 𝑅, then 𝑆 is measurable. If 𝜇 (𝑆−1(𝐴)) = 0 for all 𝐴 ∈ 𝒜 such that
𝜇(𝐴) = 0, then 𝑆 is nonsingular. If 𝑆 is a measurable transformation and 𝜇 (𝑆−1(𝐴)) = 𝜇(𝐴)
for all 𝐴 ∈ 𝒜, then 𝑆 is measure preserving or in other words the measure 𝜇 is invariant
under 𝑆.
If 𝑆 is a nonsingular transformation, the Frobenius-Perron operator is the unique operator
𝑃 ∶ 𝐿1 → 𝐿1 defined by

∫
𝐴

𝑃𝑓(𝑥)𝜇(𝑑𝑥) = ∫
𝑆−1(𝐴)

𝑓(𝑥)𝜇(𝑑𝑥), for 𝐴 ∈ 𝒜 (11)

The Frobenius-Perron operator 𝑃 describes the evolution of 𝑓 by a transformation 𝑆 [1].

The Koopman Operator

Let (𝑋, 𝒜, 𝜇) be a measure space, 𝑆 ∶ 𝑋 → 𝑋, and 𝑓 ∈ 𝐿∞. The Koopman operator with
respect to 𝑆 is the operator 𝑈 ∶ 𝐿∞ → 𝐿∞ defined by

𝑈𝑓(𝑥) = 𝑓(𝑆(𝑥)) (12)

It can easily be seen that the Koopman Operator is closely related to Frobenius-Perron
operator, differing only by the function space 𝑓 is defined in. The Koopman operator is
also known to be the adjoint or dual of the Frobenius-Perron operator. Where the following
holds for every 𝑓 ∈ 𝐿1 and 𝑔 ∈ 𝐿∞

⟨𝑃𝑓, 𝑔⟩ = ⟨𝑓, 𝑈𝑔⟩ (13)

More properties about the Koopman operator can be found in [12].

Measure Theory

The phenomena we have seen in first part can also be seen as an example of the Poincaré’s
Recurrence Theorem: If 𝑆 is measure preserving. Then for any set 𝐴 ∈ 𝒜 with 𝜇(𝐴) > 0,
almost all points of 𝐴 return infinitely often to 𝐴 under positive iteration by 𝑆 [19].

Let us define another important property called ergodicity, this property lies at the core
of our approach.

Let (𝑋, 𝒜, 𝜇) be a measure space and let 𝑆 ∶ 𝑋 → 𝑋 be a non-singular transforma-
tion, then 𝑆 is ergodic if every invariant set 𝐴 ∈ 𝒜 are trivial subsets of 𝑋 i.e. 𝜇(𝐴) = 0
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or 𝜇(𝑋\𝐴) = 0. Interesting theorems that arises from this property can be stated as follows.

For every measurable function 𝑓 ∶ 𝑋 → ℝ, 𝑆 is ergodic if and only if it satisfies 14.

𝑓(𝑆(𝑥)) = 𝑓(𝑥), for almost all 𝑥 ∈ 𝑋 (14)

This theorem implies that 𝑓 is constant almost everywhere.

It follows that, if all the fixed points (for some 𝑓 ∈ 𝐿1, 𝑈𝑓 = 𝑓) of the Koopman op-
erator 𝑈 are constant functions, then 𝑆 is ergodic. A similar statement can be said for
Frobenius-Perron operators: If 𝑆 is ergodic, then there is at most one stationary density
𝑓∗ (𝑃𝑓 = 𝑓) of 𝑃 and 𝑓∗(𝑥) > 0. Or, if there is a unique stationary density 𝑓∗ of 𝑃 and
𝑓∗(𝑥) > 0, then 𝑆 is ergodic.

Now, let us define the cornerstone of our operator-theoretic approach: the Birkhoff Er-
godic Theorem (pointwise convergence) 17 [5] [19] [1].

Let 𝑆 ∶ 𝑋 → 𝑋 be a measurable transformation and 𝑓 ∶ 𝑋 → ℝ an integrable function.
If the measure 𝜇 is invariant, then there exist an integrable function 𝑓∗ such that

𝑓∗(𝑥) = lim
𝑛→∞

1
𝑛

𝑛−1

∑
𝑘=0

𝑓 (𝑆𝑘(𝑥)) for almost all 𝑥 ∈ 𝑋 (15)

This implies that 𝑓∗(𝑥) = 𝑓∗(𝑆(𝑥)) for almost all 𝑥 ∈ 𝑋. If 𝜇(𝑋) < ∞, it can be shown
that ∫𝑋 𝑓∗(𝑥)𝜇(𝑑𝑥) = ∫𝑋 𝑓(𝑥)𝜇(𝑑𝑥) .

This theorem in other words, proves for pointwise convergence of using Lebesgue con-
vergence. It is natural that we want to extend and generalise the Birkhoff’s ergodic theorem
to more function spaces. The ergodic theorem of Von Neumann 16 help us extend this by
proving for convergence in mean in 𝐿𝑝 space (Hilbert Spaces) [19].

If 𝑆 is a measure preserving tranformation and 𝑓 ∈ 𝐿𝑝 for 1 ≤ 𝑝 < ∞ then there exists
𝑓∗ ∈ 𝐿𝑝 with 𝑓∗(𝑆(𝑥)) = 𝑓∗ such that

∥ 1
𝑛

𝑛−1

∑
𝑘=0

𝑓(𝑆𝑘(𝑥)) − 𝑓∗(𝑥)∥
𝑝

→ 0, 𝑛 → ∞ (16)

We can then extend Birkhoff’s ergodic theorem as follows: If 𝑆 ∶ 𝑋 → 𝑋 is measure
preserving and ergodic. Then for any integrable function 𝑓, the average of 𝑓 along the
trajectory of 𝑆 is equal almost everywhere to the average of 𝑓 over the space 𝑋
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lim
𝑛→∞

1
𝑛

𝑛−1

∑
𝑘=0

𝑓 (𝑆𝑘(𝑥)) = 1
𝜇(𝑋)

∫
𝑋

𝑓(𝑥)𝜇(𝑑𝑥) (17)

This theorem also states in other words that any function 𝑓 in the 𝐿𝑝 space can be
obtained by sampling via an ergodic dynamical system. A further generalisation and ex-
tension of Birkhoff’s ergodic theorem can also be seen in the Wiener-Winter theorem.

In general, the measure of any dynamical system is not a known, there are few exceptions
however e.g. Hamiltonian system. It is easier to compute for spectral objects (eigenvalues,
eigenfunction, and eigenspaces) of operators by sampling along trajectories and relying on
Birkhoff’s ergodic theorem for convergence. Extensions beyond 𝐿𝑝 space and non-measure
preserving (e.g. dissipative) transformations 𝑆 are current topics of research.

Current research
Since the Perron-Frobenius and the Koopman operator are adjoint to each other, theo-
retically it does not matter which tools we use to study a dynamical system’s behavior.
However, different methods have been developed for the numerical approximation of these
two operators.

As we have described earlier, the function space of the Frobenius-Perron Operator is in
𝐿1 therefore it is theoretically limited to solving low-dimensional problems. The classical
tools used for approximating the Frobenius-Perron operator is the Ulam-Galerkin methods
or also called as Generalised Galerkin methods [3]. The numerical approximation of the
Frobenius-Perron Operator typically requires short simulations for a large number of initial
conditions which grows exponentially with the number of dimensions. The approximation
of the Koopman operator typically requires longer simulations but fewer intial conditions
[4]. The need for a large number of initial conditions implies that we already know a lot
of things about the dynamic system of which we are analysing. Hence, is not very useful
to apply it to systems that we know nothing about. Due to a number of downsides both
theoretically and numerically, the Frobienus-Perron Operator are usually confined to very
specific type of problems. The Koopman Operator holds a larger promise of solving a larger
class of problems, therefore it would be the main focus of this literature review.

The work of [14] laid the ground work for the analysis of measure preserving deterministic
or stochastic dynamical systems using Koopman Operators. The work introduces a way to
reduce the dimensionality of the dynamical system, by finite-dimensional projections on to
Koopman eigenspaces. The Hilbert space of 𝐿2 functions are considered in this work.

A lot of research has been done to extend this result to non-conservative systems that
admit an attractor (non-measure preserving system). Attempts to solve this has been to
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introduce more appropriate spaces of functions such as the spaces of continously differen-
tiable functions [11], spaces of analytic functions [10], or generalised Hardy spaces [17] [13]

Another work [15] attempts to achieve a stronger result and solve the theoretical issues
of Koopman operator theory beyond 𝐿2 spaces. The work generalises the Koopman eigen-
functions over dynamical systems with globally stable attractors and defining a new class of
Hilbert spaces of functions that can capture its dynamics. The new class of Hilbert spaces
introduced are the Modulated Fock Spaces (Fock-Bargmann Space) and the Averaging Ker-
nel Hilbert Space (AKHS) which is the modification of the RKHS.

It was not until recently that it was discovered that the Dynamic mode Decomposition
(DMD) [18] which had its roots in fluid mechanics, can be used to approximate the Koop-
man eigenfunction leading to a considerable spike of interest in the field. The data-driven
approximation methods can be separated into two main methods - finite-dimensonl ma-
trix approximation of Koopman operator (DMD) and generalised Laplace averages (GLA).
GLA methods differ from DMD that they do not provide an approximation of the operator
but they first seek an approximation to eigenvalues then use projection theorems to obtain
eigenfunctions and modes [2].

Data-driven approximations of the Koopman eigenfunctions have been applied to solve
Control problems [7] [6] and many other system identification problems in other fields [9].
Convex formulations utilising Koopman eigenfunctions has been introduced in [16] [8] to
solve prediction and control problems (LQR and MPC).
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