|Index||Blogs|

Derivation of 3D Laplace equation from Cartesian coordinates (x,y,z) to Cylindrical coordinates (R, θ, z)

Preface

This derivation was particular interesting because of the subtle mistakes one can make and still get the correct answer. This was one of the problems in my assigned homeworks, where I also made a mistake in one of the partial differentiation steps.

Derivation

Given that the Laplace equation in Cartesian coordinates is given by

\[ \begin{align*} ∇^2 ϕ = \frac{\partial^2 ϕ}{\partial x^2} + \frac{\partial^2 ϕ}{\partial y^2} + \frac{\partial^2 ϕ}{\partial z^2} \\ \end{align*} \]

Let \(r\) be the hypotenuse of a triangle, \(x\) as the adjacent, and \(y\) as the opposite.

\[ \begin{align*} x = r \cos(\theta), \quad y = r \sin(\theta) \\ x^2 + y^2 = r^2 \\ \end{align*} \]

\[ \begin{align*} \frac{\partial} {\partial x} \left( r^2 \right) &= \frac{\partial }{\partial x} \left( x^2 + y^2 \right) \\ 2r \frac{\partial r}{\partial x} &= 2x \frac{\partial x}{\partial x} \\ \frac{\partial r}{\partial x} &= \frac{x}{r} = \frac{r \cos(\theta)}{r} = \cos(\theta) \\ \frac{\partial} {\partial y} \left( r^2 \right) &= \frac{\partial }{\partial y} \left( x^2 + y^2 \right) \\ 2r \frac{\partial r}{\partial y} &= 2y \frac{\partial y}{\partial y} \\ \frac{\partial r}{\partial y} &= \frac{y}{r} = \frac{r \sin(\theta)}{r} = \sin(\theta) \\ \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial y} = 0 \\ \end{align*} \]

From trigonometry,

\[ \begin{align*} \tan( \theta ) &= \frac{y}{x} \\ \theta &= \tan ^{-1} \left( \frac{y}{x} \right) \\ \frac{\partial \theta}{\partial x} &= \frac{\partial}{\partial x} \left( \tan ^{-1} \left( \frac{y}{x} \right) \right) \\ &= \frac{1}{1 + \left( \frac{y}{x} \right)^2 } \left( - \frac{y}{x^2} \right) \\ &= \frac{- y}{x^2 + y^2} = \frac{-r \sin(\theta)}{r^2} = \frac{-\sin(\theta)}{r} \\ \theta &= \tan ^{-1} \left( \frac{y}{x} \right) \\ \frac{\partial \theta}{\partial y} &= \frac{\partial}{\partial y} \left( \tan ^{-1} \left( \frac{y}{x} \right) \right) \\ &= \frac{1}{1 + \left( \frac{y}{x} \right)^2 } \left( \frac{1}{x} \right) \\ &= \frac{x}{x^2 + y^2} = \frac{r \cos(\theta)}{r^2} = \frac{\cos(\theta)}{r} \\ \end{align*} \]

\[ \begin{align*} \frac{\partial ϕ}{\partial x} &= \frac{\partial ϕ}{ \partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial ϕ}{ \partial \theta} \cdot \frac{\partial \theta}{\partial x} + \frac{\partial ϕ}{ \partial z} \cdot \frac{\partial z}{\partial x} \\ & = \cos(\theta) \frac{\partial ϕ}{\partial r} + \frac{-\sin(\theta)}{r} \frac{\partial \phi}{\partial \theta} + 0 \\ \frac{\partial ϕ}{\partial y} &= \frac{\partial ϕ}{ \partial r} \cdot \frac{\partial r}{\partial y} + \frac{\partial ϕ}{ \partial \theta} \cdot \frac{\partial \theta}{\partial y} + \frac{\partial ϕ}{ \partial z} \cdot \frac{\partial z}{\partial y} \\ & = \sin(\theta) \frac{\partial ϕ}{\partial r} + \frac{\cos(\theta)}{r} \frac{\partial \phi}{\partial r} + 0 \\ \frac{\partial^2 ϕ}{\partial x^2} & = \cos(\theta) \frac{\partial^2 ϕ}{\partial r^2} \cdot \frac{\partial r}{\partial x} + (-\sin(\theta)) \frac{\partial ϕ}{\partial r} \cdot \frac{\partial \theta}{\partial x} \\ & + \frac{-\sin(\theta)}{r} \frac{\partial^2 \phi}{\partial \theta^2} \cdot \frac{\partial \theta}{\partial x} + \frac{\partial ϕ}{\partial \theta} \left( \frac{1}{r^2} \sin(\theta) \frac{\partial r}{\partial x} + \frac{1}{r} \left( - \cos(\theta) \right) \frac{\partial \theta}{\partial x} \right)\\ & = \cos^2(\theta) \frac{\partial^2 ϕ}{\partial r} + \frac{\sin^2(\theta)}{r} \frac{\partial ϕ}{\partial r} + \frac{\sin^2 (\theta)}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial ϕ}{\partial \theta} \left( \frac{2 \sin(\theta) \cos(\theta)}{r^2} \right) \qquad \square \\ \frac{\partial^2 ϕ}{\partial y^2} & = \sin(\theta) \frac{\partial^2 ϕ}{\partial r^2} \cdot \frac{\partial r}{\partial y} + \cos(\theta) \frac{\partial ϕ}{\partial r} \cdot \frac{\partial \theta}{\partial y} \\ & + \frac{\cos(\theta)}{r} \frac{\partial^2 \phi}{\partial \theta^2} \cdot \frac{\partial \theta}{\partial y} + \frac{\partial ϕ}{\partial \theta} \left( \frac{-1}{r^2} \cos(\theta) \frac{\partial r}{\partial y} + \frac{1}{r} \left( - \sin(\theta) \right) \frac{\partial \theta}{\partial y} \right)\\ & = \sin^2(\theta) \frac{\partial^2 ϕ}{\partial r} + \frac{\cos^2(\theta)}{r} \frac{\partial ϕ}{\partial r} + \frac{\cos^2 (\theta)}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial ϕ}{\partial \theta} \left( \frac{-2 \sin(\theta) \cos(\theta)}{r^2} \right) \qquad \square\\ \end{align*} \]

Plugging in our results into our original equation,

\[ \begin{align*} ∇^2 ϕ &= \frac{\partial^2 ϕ}{\partial x^2} + \frac{\partial^2 ϕ}{\partial y^2} + \frac{\partial^2 ϕ}{\partial z^2} \\ &= \frac{\partial^2 ϕ}{\partial r^2} + \frac{1}{r} \frac{\partial ϕ}{\partial r} + \frac{1}{r^2} \frac{\partial^2 ϕ}{\partial \theta^2} + \frac{\partial^2 ϕ}{\partial z^2} \qquad \blacksquare \end{align*} \]

Created: 2023-03-20 Mon 01:02

Validate